In 2009, following the discovery of the process for extracting lead-212 (212Pb), a very rare radioactive isotope derived from thorium, Orano launched Orano Med. Orano’s medical subsidiary brings together biotechnologies and nuclear technologies to develop a new generation of targeted therapies against cancer using the unique properties of lead-212. Orano Med is focusing all its research on targeted alpha therapy, an innovative technology that combines lead-212 with biological molecules (peptides, antibodies) to target receptors and antigens in cancerous cells. Objective: Recognize and destroy cancer cells in a selective way, limiting the impact on the surrounding healthy cells.
Orano Med’s work is providing hope in the international medical community that it could move us toward less toxic and more effective treatments for patients with limited therapeutic solutions. A dozen developments are underway, led by Orano Med alone or in partnership with other biotech and pharmaceutical companies in France and abroad.Orano is recognized leader with its 40+ years of expertise in all phases of the nuclear fuel cycle, making it a specialist in chemistry of materials, hydrometallurgy, and industrialization of processes. This know-how can be applied to battery recycling via an innovative low-carbon process, making it possible to recover and purify valuable materials in the battery modules (cobalt, manganese, nickel, lithium, graphite), with a view to their reuse in new components.
Since they are used in electric vehicles and wind turbines, two markets undergoing strong growth, high-performance permanent magnets are strategic for the decarbonization of the economy. These permanent magnets systematically comprise rare earths, 80% of which are currently produced in China.
The MAGNOLIA project, launched in April 2022, brings together industrial and institutional partners in the high-performance permanent magnet sector: Orano, Valéo, Paprec, Daimantel France, and CEA. It aims to structure in France a sovereign, competitive, and cutting-edge sector for producing sintered permanent magnets.
Among the various types of permanent magnets, NdFeB sintered magnets have the best magnetic energy density, making it possible to design electric motors that are more compact, lightweight, and efficient. In terms of their value, they represent 60% of the permanent magnet market, in which the volume of permanent magnets is expected to double over the course of this decade, generating high price tension.
*Sintering is a manufacturing process for parts that consists of heating a powder without causing fusion.
MAGNOLIA is a project supported by France Relance as part of the drive to ensure the security of the energy transition and industrial relocalization in critical sectors.
Producing stable isotopes is based on the skills and cutting-edge technologies used by Orano for uranium transformation, conversion, and enrichment. This industrial experience is underpinning the deployment of a new activity outside the nuclear power industry in precisely this field of stable isotope production. The Orano Group is thus offering an alternative in the market for high-purity isotopic and chemical products intended for healthcare, research, and industrial sectors.
Stable isotopes are atoms that do not emit radiation and are thus not radioactive. They are used in a wide range of applications, notable in healthcare, scientific research, and industry.
In the 19th century, the chemist Dmitri Mendeleev created a table to classify the different families of atoms. Among the 118 chemical elements of this periodic table, 80 are stable isotopes.